Neutrino scattering uncertainties and CP violation measurements

Pilar Coloma

Center for Neutrino Physics Virginia Tech

Based on a collaboration with Huber, Kopp, Winter, Phys. Rev. D 87, 033004 (2013)

Intensity Frontier Neutrino Subgroup Workshop SLAC, March 6-7, 2013

Neutrino mixing

Knowns

$$\theta_{12} = 33.36^{\circ}$$

$$\theta_{23} = 40^{\circ}/50.4^{\circ}$$

$$\theta_{13} = 8.66^{\circ}$$

$$\Delta m_{21}^2 = 7.5 \times 10^{-5}$$

$$\Delta m_{31}^2 = 2.473 \times 10^{-3} (NH)$$

Gonzalez-Garcia, Maltoni, Salvado and Schwetz, 1209.3023 [hep-ph] (see also 1205.5254 [hep-ph] and 1205.4018 [hep-ph])

Future oscillation experiments

- Muon-based neutrino beams (NuFact, NuSTORM)
 - Low uncertainties, no intrinsic bg, flavor rich
- Pion-based neutrino beams (T2K,NOvA,LBNE,...)
 - Intrinsic bg, large flux and cross section uncertainties
 - Technology already well-known
 - No magnetization is required
- Beta-decay neutrino beams (beta-beams)
 - Technologically very demanding
 - Muon disappearance unavailable

Setups

	Setup	$E_{ u}^{ m peak}$	L	OA	Detector	kt	MW	Decays/yr	$(t_{\nu},\!t_{\bar{\nu}})$
Benchmark	BB350	1.2	650	_	WC	500	_	$1.1(2.8)\times10^{18}$	(5,5)
	NF10	5.0	2 000	_	MIND	100	_	7×10^{20}	(10,10)
	WBB	4.5	2 300	_	LAr	100	0.8	_	(5,5)
	T2HK	0.6	295	2.5°	WC	560	1.66	_	(1.5, 3.5)
Alternative	BB100	0.3	130	_	WC	500	_	$1.1(2.8)\times10^{18}$	(5,5)
	+ SPL	0.5		_			4	_	(2,8)
	NF5	2.5	1 290	_	MIND	100	_	7×10^{20}	(10,10)
	LBNE _{mini}	4.0	1 290	_	LAr	10	0.7	_	(5,5)
	$NO \nu A^+$	2.0	810	0.8°	LAr	30	0.7	_	(5,5)
2020	T2K	0.6	295	2.5°	WC	22.5	0.75	_	(5,5)
	ΝΟνΑ	2.0	810	0.8°	TASD	15	0.7	_	(4,4)

The golden channel

The best chance to measure CPV is through:

$$P_{e\mu}^{\pm}(\theta_{13}, \delta) = X_{\pm} \sin^2 2\theta_{13}$$

$$+ Y_{\pm} \cos \theta_{13} \sin 2\theta_{13} \cos \left(\pm \delta - \frac{\Delta_{31} L}{2}\right)$$

$$+ Z$$

$$X_{vac} \propto \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$
 $Y_{vac} \propto \sin\left(\frac{\Delta m_{31}^2 L}{4E}\right) \sin\left(\frac{\Delta m_{21}^2 L}{4E}\right)$

Impact of systematics on CPV

Coloma and Fernandez-Martinez, 1110.4583 [hep-ph]

Impact of systematics on CPV

Coloma and Fernandez-Martinez, 1110.4583 [hep-ph]

Huber, Mezzetto and Schwetz, 0711.2950 [hep-ph]

Systematics

- Possible ways to reduce their impact:
 - Measure final flavor cross sections at the near det
 If this cannot be done, put constraints on ratios between
 different flavors
 Day, McFarland, 1206.6745 [hep-ph]
 - Combining different experiments (BB+SPL)
 - Measure intrinsic backgrounds at the near det
 - Use disappearance data from the far detector

Correlations

$$\mu^- \to e^- \bar{\nu}_e \nu_\mu$$

	$\bar{\nu}_e ightarrow \bar{ u}_\mu$	ϕ_{-}	V_{far}	Matter	Xsec
ND:	$ u_{\mu} \to \nu_{\mu} $ $ \bar{\nu}_{\mu} \to \bar{\nu}_{\mu} $	$\phi \ \phi_+$	V near V near	Vacuum Vacuum	Xsec Xsec
FD:	$\nu_{\mu} \to \nu_{\mu}$ $\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}$	$\phi \ \phi_+$	V far V far	Matter Matter	Xsec Xsec

Simulation details

		SB		BB			NF		
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated			correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated			correlated		
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio ν_e/ν_μ QE*	3.5%	11%	_	3.5%	11%	_	_	_	_
Effec. ratio ν_e/ν_μ RES*	2.7%	5.4%	_	2.7%	5.4%	_	_	_	_
Effec. ratio ν_e/ν_μ DIS*	2.5%	5.1%	_	2.5%	5.1%	_	_	_	_
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

Impact of systematics on CPV

Why precision? \rightarrow see Huber's talk

Huber Lindner, Schwetz and Winter, 0907.1896 [hep-ph]

Coloma, Donini, Fernandez-Martinez and Hernandez, 1203.5651 [hep-ph]

Precision, systematics and near dets

Precision, systematics and near dets

However...

- These results assumed identical near and far spectra
- No shape uncertainties on the cross section were considered
- If this is not the case, the situation can be far more complicated, since what is truly measurable is a convolution of cross section and flux

Nuclear effects and FSI

Nuclear effects and FSI have a non-negligible effect on the neutrino energy spectrum.

If ignored, this could lead to a wrong fit for the oscillation parameters!!!

More in Mosel's talk

Lalakulich, Mosel and Gallmeister, 1208.3678 [nucl-th] (see also 1202.4745 [hep-ph], 1204.5404 [hep-ph], 1302.0703 [hep-ph] and Annu. Rev. Nucl. Part. Sci. 2011.61:355-378)

Toy model

- Super-Beam with peak energy around 1 GeV, L=730 km 500 kton WC detector \rightarrow QE events only (1-ring)
- Use migration matrix for ¹⁶O produced with GiBUU http://gibuu.physik.uni-giessen.de/GiBUU/wiki
- Muon neutrino disappearance only \rightarrow fit to atmospheric parameters
- Inclusion of bin-dependent systematics to be able to fit shape errors

Toy model

P. Coloma and P. Huber, work in progress

Toy model

Conclusions

- The most relevent systematics on LBL exps are those related to cross sections
 - Unavailability of final flavor at the near det may be a problem
- Systematic effects can be kept under control if:
 - no flux shape uncertainties
 - no cross section shape uncertainties
- If these are present both effects cannot be disentangled
 - this could lead to a wrong fit for the oscillation parameters!

Thank you!

Exposure

Exposure

Nuclear effects and FSI

Nuclear effects and FSI have a non-negligible effect on the neutrino energy spectrum.

If ignored, this could lead to a wrong fit for the oscillation parameters

More in Mosel's talk

1208.3678 (see also 1202.4745, 1204.5404,1302.0703,...)

Nuclear effects and FSI

Will the hierarchy be measured soon?

$$(\Delta\theta_{13})_{\pm} \propto \left[\frac{(1 \mp \hat{A})^2}{\sin^2((1 \mp \hat{A})\Delta)} \right] \frac{1}{\theta_{13}} \Delta N_{\pm}$$

Statistical limit:

$$\Delta N_{\pm} \propto \sqrt{N_{\pm}} \propto \theta_{13} \longrightarrow (\Delta \theta_{13})_{\pm} \propto const$$

Systematics on the signal:

$$\Delta N_{\pm} \propto N_{\pm} \propto \theta_{13}^2 \longrightarrow (\Delta \theta_{13})_{\pm} \propto \theta_{13}$$

Background error:

$$\Delta N_{\pm} \propto const$$
 \longrightarrow $(\Delta \theta_{13})_{\pm} \propto 1/\theta_{13}$

Statistical limit:

$$\frac{\Delta\theta_{13}}{\theta_{13}} \propto \frac{1}{\theta_{13}}$$

Systematics on the signal:

$$\frac{\Delta\theta_{13}}{\theta_{13}} \propto const$$

Background error:

$$\frac{\Delta\theta_{13}}{\theta_{13}} \propto \frac{1}{\theta_{13}^2}$$

Coloma, Donini, Fernandez-Martinez and Hernandez, 1203.5651 [hep-ph]

VACUUM

$$(\Delta\delta)_{\pm} \propto f[\Delta] rac{1}{\sin\left(rac{\pi}{2} \mp \delta
ight)}$$

VACUUM

MATTER

$$(\Delta\delta)_{\pm} \propto f[\Delta] rac{1}{\sin\left(rac{\pi}{2} \mp \delta
ight)}$$

$$(\Delta \delta)_{\pm} \propto \tilde{f}[\Delta, \hat{A}] \frac{1}{\sin\left(\frac{\pi}{2} \frac{\hat{A}}{(1 \mp \hat{A})} \mp \delta\right)}$$

Coloma, Donini, Fernandez-Martinez and Hernandez, 1203.5651 [hep-ph]

Precision at 1σ

Coloma, Donini, Fernandez-Martinez and Hernandez, 1203.5651 [hep-ph]

Present generation

• T2K: target power is 750 kW, uses SK as detector (22.5 kt) at 295 km. Off-axis by

2.5deg

already taking data: 2.5 and 3.2 sigma evidences for nonzero θ_{13} reported in 1106.2822 and at ICHEP2012

 NOvA: target power is 700 kW, uses 14 kton TASD detector at 810 km. Off-axis

by 0.8 deg

data taking expected to start in May 2013 1209.0716 [hep-ex]

Present generation

Huber et al, 0907.1896 [hep-ph]

1st vs 2nd oscillation maxima

Huber and Kopp, 1010.3706[hep-ph]